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ABSTRACT: This study introduces a novel deep learning-based method for detecting open pit coal mines in medium 

high (MH)resolution satellite imagery and analyzing annual variations in coal mining areas. The study aims to monitor 

and precisely identify coal mines, given their vital function as a primary energy source and a significant contributor to 

greenhouse gas emissions. The proposed method employs the U-Net architecture and ResNet 34 as its backbone for 

accurate detection and classification. The applied dataset consists of multispectral imagery from Sentinel-2 and synthetic 

aperture radar (SAR) imagery from Sentinel-1. Manual labelling of known coal mine locations using mining data as a 

reference, subdividing Sentinel image patches for training U-Net convolutional neural networks (CNNs) to classify coal 

mine and non-coal mine areas, and training and testing U-Net architecture and ResNet as a backbone deep learning model 

are the three essential steps involved in the process. The classification accuracy of the coal mining detection deep learning 

model is 97%, and the kappa value is 0.91. Preliminary results indicate that the investigation demonstrates the evolution 

of coal mining from 2016 to 2021, with an increase of over 40% in coal mining area in 2019. In 2017 and 2020, the area 

mined for coal will decrease. Variations in annual coal mining variations emphasize the significance of replanting efforts. 

The proposed method uses deep learning and satellite imagery to provide an accurate and efficient solution for detecting 

and monitoring open-pit coal mines. Incorporating artificial intelligence into dynamic coal mining activities yields 

valuable insights that aid in making informed decisions for sustainability. 

 

1. INTRODUCTION 

1.1 Background 

 Coal has made a great contribution to world electricity production. The International Energy Agency (IEA) estimates 

that global coal consumption in 2022 will be over 8 billion metric tons. Coal power accounts for 37% of the world's 

electricity production, or the equivalent of 44,000 terawatt-hours [1]. Coal mining in Tapin Regency, South Kalimantan, 

has contributed to local economic activity and 26.47% of the gross domestic product. 

 However, Coal mining, in particular, is one of many activities that can have significant environmental impacts [2]. 

One of the biggest causes of methane emissions is coal mining. According to the U.S. Environmental Protection Agency 

(2019), coal mines account for 11% of all global methane emissions, while the global emission inventory EDGAR v4.3.2 

places the fugitive CH4 emissions of coal mines at around 13% of the total anthropogenic methane budget [3]. Study 

from Greenpeace Indonesia, approximately 3,000 kilometers, or approximately 45 percent of South Kalimantan's rivers, 

travel through a coal mining area and may be contaminated by coal mine hazardous waste. Greenpeace analyzed 29 

samples, 22 of which were from tailings basins and ex-mining pits in five coal mining concessions. South Kalimantan 

has a pH level significantly below the government's standard. Eighteen samples from the tailings storage pond have a pH 

below four and contain significant concentrations of nearly all metals [4]. As a result, coal is like double edge sword. 

Both the positive and negative effects of coal mining need to be monitored. 

 Monitoring coal mining is important, especially with remote sensing. Remote sensing technology is essential in 

monitoring mining pollution, geological disasters, and mining activities. It is also used to determine the size and location 

of mines [5]. Remote sensing, especially Synthetic Aperture Radar (SAR), can be used in any weather, around the clock, 

and at long range [6]. The developments in neural networks and deep learning techniques have proved successful in land 

use and land cover classification task [7] on remote sensing data. Combining deep learning with remote sensing data can 

increase effectiveness and reduce costs more efficiently than manual outcrop techniques [8]. Therefore, continuous 

monitoring of open-pit coal mining is of utmost importance and enables efficient planning and management of mining by 

recording environmental impacts and enforcing relevant regulations [6]. 
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 Utilising remote sensing data, air pollution, field measurements, and meteorological data as predictors, a recent study 

[9] estimates and compares spatial empirical models based on Land Use Regression (LUR) to estimate the number of 

respiratory disease patients. The objective of another study [10] is to provide an up-to-date overview of URIs caused by 

coal mine dust in light of its medical benefits. Another study [6] concentrates on the use of SAR to monitor mining 

activities, particularly with the Normalised Difference Activity Index (NDAI), which can provide temporal decorrelation 

in coal mining. The study on LULC in coal mining areas [11] examines the impact of coal mining on LULC at the V. D. 

Yalevsky coal mine in Russia from 1992 to 2019. 

 This study aims to develop a deep learning approach for monitoring annual change in surface coal mines using a U-

Net architecture and both multispectral and SAR imagery. 

 

1.2 Related Work 

 Deep convolutional neural networks for surface coal mines determination from sentinel-2 image 

 The present study investigates the utilization of deep convolutional neural networks (CNNs) for the precise 

identification of surface coal mines in Sentinel-2 satellite imagery. The research employs the VGG19 architecture within 

a deep learning framework to accomplish this objective. One noteworthy discovery in this study is to the comparison 

between the conventional Maximum Likelihood Classification technique and the more sophisticated Deep Learning 

VGG19 Architecture. This comparison underscores the superior performance of the deep learning methodology in 

successfully identifying surface coal mines from the Sentinel-2 dataset, which has 13 spectral bands. This paper provides 

significant contributions to the understanding of the effectiveness of deep learning techniques, particularly the VGG19 

architecture, in improving the precision and efficiency of surface coal mine detection in remote sensing applications [12]. 

 

 Understanding deep learning in land use classification based on Sentinel‑ 2 time series   

 The present literature review examines the application of deep learning methods in the classification of land use, 

specifically focusing on the usage of Sentinel-2 time series data. The aforementioned statement highlights the importance 

of interpretability in prediction, especially in domains such as public budget management and policy compliance. The 

authors emphasize that the absence of interpretability in deep learning models hinders their acceptance, as the justification 

for model decisions remains unverifiable. This research focuses on the utilization of a recurrent neural network to classify 

land usage within the framework of the European Common Agricultural Policy. The primary aim of this study is to 

improve the understanding of network activity and discover crucial factors that can predict outcomes in the classification 

process. The findings indicate that the utilization of red and near-infrared bands from the Sentinel-2 satellite is of utmost 

importance in obtaining essential data. Moreover, it is seen that features derived from acquisitions during the summer 

season exert the greatest influence. The authors of this study admit that deep learning plays a significant role in supporting 

the Resource-efficient Europe program. However, they also recognize that there are issues associated with interpretability 

in this context. Deep learning models are frequently perceived as opaque systems that exhibit great levels of accuracy but 

lack transparency. This research posits the importance of not only providing accurate reports but also elucidating the 

internal workings of classifiers in order to facilitate informed decision-making. The enhancement of interpretability in 

algorithms, such as BiLSTMs, is a topic of discussion in relation to memory utilization. In summary, this study provides 

a thorough examination of the application of deep learning techniques in the classification of land use using Sentinel-2 

data. This statement underscores the significance of interpretability and the difficulties that deep learning encounters 

within this particular framework. The alignment of deep learning with sustainability objectives underscores its 

significance, but, the effective deployment of this technology necessitates substantial improvements in interpretability 

[13]. 

 

2. METHODOLOGY 

2.1 Deep Learning Approach 

 Deep learning is a subset of machine learning techniques based on artificial neural networks and representation 

learning. LeCun (2015) states that learning can be supervised, semi-supervised, or unsupervised. U-Net is a semantic 

segmentation architecture. It comprises of a path that contracts and a path that expands. The path of contraction conforms 

to the standard architecture of a convolutional network [14]. 

 As shown in Figure 1, the deep learning architecture for this research employs the U-Net model and ResNet-34 as the 

backbone model. ResNet, or Deep Residual Network, is an artificial neural network (ANN). This architecture was devised 

to address issues with deep learning training, which typically takes a long time and is restricted to a certain number of 

layers. The complexity of ResNet is due to the use of skip connections or shortcuts. The ResNet model is implemented 

by omitting connections to two to three architecture-specific layers containing ReLU and batch normalisation.  
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Figure 1. U-Net with ResNet Deep Learning Architecture 

2.2 Pre-Processing Satellite Imagery 

 SAR Pre Processing Workflow 

 The pre-processing workflow of SAR from Sentinel-1 GRD data. The figure 2 shown SAR consists of 7 processing 

steps explained in a distinct part below and intended to minimize error propagation in the following operations [15]. The 

proposed pre-processing workflow for Sentinel-1 SAR data involves several essential steps. It starts by applying accurate 

orbit data to improve geolocation. Thermal noise removal reduces distortion, while border noise removal corrects artifacts 

at image edges. Calibration converts pixel values to calibrated backscatter. Speckle filtering enhances image quality, and 

Range Doppler terrain correction compensates for viewing angle distortions. Finally, conversion to dB provides a more 

intuitive backscatter representation. This workflow enhances image accuracy, clarity, and geolocation, enabling better 

analysis and interpretation of Sentinel-1 SAR data. Sigma dB from VV Polarization process to make the Gray Level Co-

Occurrence Matrix (GLCM). 

 GLCM determines the likelihood that, inside a specified window, a pixel with grey value i will be located a specific 

distance and angle from a pixel with grey value j. For each of the eight directions, GLCM matrices were made and 

averaged to create the omnidirectional textures [16]. 

 

 
Figure 2. Sentinel-1 Ground Range Detected (GRD) pre-processing workflow. [15] 

  

 Gray Level Co-occurrence Matrix (GLCM) 

 The Gray-Level Co-occurrence Matrix (GLCM) offers second-order statistical measures for the purpose of extracting 

texture features. The algorithm computes the likelihood of a pixel with a gray value i appearing at a specific distance and 

angle from another pixel with a gray value j within a defined window. In order to generate omnidirectional textures, the 

process involved the creation of GLCM matrices for each of the eight directions, which were afterwards averaged [16]. 

 The averaged GLCM retains the presence of directional structures, albeit with less impact due to the process of 

averaging. The inclusion of the specific orientation of structures is no longer a component of the average Gray-Level Co-

occurrence Matrix (GLCM). The remaining parameters are often chosen by manual selection or optimized for a particular 

study and afterwards held constant. The calculation of individual scalar texture features can be derived from the GLCM 

using the following formula. 
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 Spectral Indices Calculation 

In this research, three spectral indices were derived to characterize the spectrum features of coal mining areas for all 

segmented objects. These indices are essential for analysing and monitoring environmental changes associated with coal 

mining activities. The three indices are the normalized difference coal index (NDCI), the normalized difference vegetation 

index (NDVI), and the built-up area index (BAI). 

By utilizing these spectral indices, researchers can gain valuable insights into the distribution of coal mining areas. This 

information is vital for monitoring the coal mining change. The formula for NDVI, NDCI, and BAI is as follows: 

NDVI = (NIR - Red) / (NIR + Red) (11) 

NDCI = (NIR – SWIR1) / (NIR + SWIR1). (12) 

BAI = (Blue - NIR) / (Blue + NIR). (13) 

 

 
 

2.3 Dataset 

2.3.1 Area of Interest 

 The study area used in this study was three coal mining area on Tapin Regency in South Borneo, Indonesia, Tapin 

Regency is located between 2˚32'.43" and 3˚00'.43" south latitude and between 114˚46'.13" - 115˚30'33" east longitude 

(BPS, 2021). Tapin is one of the biggest coal producing areas on South Borneo, the coal mining area are Lokpaikat Coal 

Mining Area, South Tapin Coal Mining Area, and Binuang Coal Mining Area as shown in figure 3. 
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Figure 3. Tapin Regency area of interest  

 

 Annual Imagery Collection Dataset\ 

 

 

Figure 4. Annual Dataset with 23 bands from Sentinel 2 and Sentinel 1 

 

The annual imagery dataset from 2016 to 2021 for deep learning uses 23 bands from multispectral imagery that contains 

RGB, NIR, VNIR, and SWIR with three indices like NDVI, NDCI, BAI (12 bands), and SAR from composite polarization 

σVV with GLCM (total of 11 bands) as shown in figure 4. 

 

3. RESULT AND DISCUSSION 

3.1 Deep Learning Classification  

The result from the U-Net deep learning model trained for identifying two classes, coal mine and no coal mine, The model 

took 2 hours and 20 minutes for training with a system of NVIDIA RTX 2060 GPUs with a 6 GB memory capacity. The 

U-Net deep learning model depicted in Figure 5 was constructed using 205 tiles with 128 x 128 pixels per image and 200 

epochs. On a validation dataset containing two classes and 23-band imagery. 

 
Figure 5. U-Net Model Training and validation loss 
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As can be seen in Table 1, the classification results are similar to the reference based on the topographic map and visual 

interpretation. Labels for coal mining included open cuts, tailings dams, waste rock dumps, trees inside the coal mining 

area, and water ponds. 

 

 

Table 1. Coal Mining Area Deep Learning Classification 

 

As ground truth, the topographic map and the coal mines that can be seen are used to evaluate how well the model 

classifies. The overall accuracy of a deep learning model based on the confusion matrix shown in Table 2 is 97.4%, with 

a Kappa value of 0.91. The deep learning model has greater accuracy in non-coal mining areas. Usually the area of interest 

is covered by cloud, which can be a disturbance to the classification. A deep learning model in another area has an overall 

accuracy of 95%.  

 

Table 2. Confusion Matrix 

 

 

 

 

 

 

 

 

 

 

 

Category Lokpaikat, Indonesia South Tapin, Indonesia Binuang, Indonesia 

Imagery 

   

Result 

   

Reference 

 

 

   

 
Reference (Pixels) 

Tapin, Indonesia Coal No Coal User 

Coal Mine 4190 326 4516 

No Coal Mine 378 21786 22164 

Producer 4568 22112 26680 

Overall Accuracy = 97.4%, Coal Mine User Accuracy = 92.8%, No Coal Mine User Accuracy = 98.3%, Coal 

Mine Producer Accuracy = 91.7%, No Coal Mine Producer Accuracy = 98.5%, Kappa = 0.91 
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3.2 Annual Coal Mining Change  

      

      

     

     

      

      
Figure 6. Annual Imagery (Top) and Classification (Bottom) of Coal Mining Area Change from 2016 to 2021(left to 

right) on Lokpaikat, South Tapin, and Binuang Coal Mining 

 

 During the time span between 2016 and 2021, notable transformations have been documented in the coal mining 

regions of Lokpaikat, South Tapin, and Binuang, as depicted in Figure 6. Significantly, the year 2019 represented a pivotal 

stage in coal mining operations, as shown by figure 7. It is noteworthy that Binuang stood out as the region with the most 

extensive mining activity, including around 1033.72 hectares. The region of South Tapin demonstrated a close adherence 

to the coal mining industry, encompassing an approximate land area of 1391.36 hectares. In contrast, Lokpaikat 

showcased the most expansive coverage of coal mining activities, spanning an estimated land area of 1793.28 hectares. 

 Between the years 2016 and 2021, significant changes occurred within the coal mining regions, resulting in a state 

of dynamic transformation. These modifications involve a range of elements, such as changes in land cover, differences 

in terrain shape, and overall transformations in landscape characteristics. It is probable that the coal mining operations 

have resulted in alterations to the land's surface, which may have caused surface disruptions, alterations in topography, 

and shifts in vegetation patterns. The potential modifications may give rise to various implications for the environment, 

ecosystems, and nearby communities. 

 The significance of monitoring and assessing the observed discrepancies in coal mining regions, namely Lokpaikat, 

South Tapin, and Binuang, is emphasized. Comprehensive evaluations of land cover modifications and topography 

changes are essential in order to comprehend the effects of coal mining operations on these particular areas. The 

aforementioned trend in the most prominent coal mining region in Binuang during the year 2019 underscores the 

imperative of ongoing surveillance and conscientious administration of mining operations in order to uphold sustainable 

practices and avoid detrimental environmental impacts. 
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Figure 7 Annual Quantitative Coal Mining Area Change on Lokpaikat, South Tapin, and Binuang Coal Mining 

 

This research focus on annual coal mining change from 2016 to 2021 on three different coal mining area on Tapin 

Regency as shown in figure 6. Cummulative of three coal mining area on Tapin Regency as shown in figure 8 the highest 

coal mining area on 2019 with total 4,218 Ha and it has fluctuative trend due to replantation activity of coal mining 

industry. 

 
Figure 8 Annual Overall Quantitative Coal Mining Area Change 

 

4. DISCUSSION AND CONCLUSION 

4.1 Discussion 

 The implementation of a deep learning-based technique for the yearly identification of changes in open-pit coal 

mines presents a revolutionary method for optimizing analysis procedures. This methodology effectively reduces the 

time-consuming elements of manual analysis, resulting in increased productivity and significant cost savings. This study 

presents a detailed portrayal of the evolutionary trajectory of the coal mining region in Tapin Regency, covering the 

period from 2016 to 2021. Of particular significance is the huge increase of 40% in coal mining observed during the key 

year of 2019. This significant increase highlights the ever-changing character of the coal mining sector and reveals the 

various aspects of the industry. Upon further examination of the fluctuations in yearly coal extraction, a notable revelation 

emerges: the urgent importance of reforestation efforts in the context of coal mining. The culmination of this study's 

contributions is intricately interwoven throughout these insights.  

 The utilization of a deep learning approach enhances the research's analytical strength and introduces a unique 

element of novelty to the study of annual coal mining area fluctuations in Tapin Regency. This work uses deep learning 

techniques to explore the annual changes in coal mining in the region, going beyond conventional methodologies. It 

presents a novel and data driven approach that sheds light on the intricate details of these alterations. This fosters a more 
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comprehensive comprehension of the interaction of industrial activities, environmental concerns, and the application of 

advanced technology in order to promote sustainable mining methods. 

 

4.2 Conclusion 

 In summary, the initial findings derived from the implementation of a deep learning model in the context of coal 

mining operations offer captivating observations. In contrast to prevailing assumptions, the region characterized by coal 

mining has exhibited a rather unforeseen pattern, characterized by intermittent growth but primarily by a gradual decline. 

The aforementioned findings redirect the discourse towards the noteworthy influence of reforestation initiatives 

undertaken by the coal mining industry. The consequences of these findings are significant, not just for the coal mining 

industry but also for the wider context of resource management and policy development. This research provides a unique 

viewpoint on sustainable practices that aim to reconcile economic operations with ecological balance by examining the 

complex dynamics of fluctuations in coal mining areas.  

 Therefore, these findings provide a basis for making well-informed decisions and implementing flexible strategies 

in the mining sector, thereby enhancing the possibility of responsible utilization of resources. The possible areas for future 

investigation are really intriguing. In order to enhance the progression of information, future studies on coal mining can 

incorporate an examination of interconnected variables. The examination of the relationship between coal mining 

activities and environmental factors, such as water quality, offers a potentially fruitful avenue for uncovering significant 

connections between industrial operations and the health of ecosystems.  

 Furthermore, doing an in-depth analysis of the relationship between coal mining activities and illness patterns has 

the potential to shed light on the possible health consequences, thereby enhancing our understanding of the complex 

effects of mining operations. 

 As we conclude, the journey undertaken through this research not only underscores the multidimensional aspects of 

coal mining dynamics but also underscores the potential for generating transformative insights that resonate across 

environmental, industrial, and societal domains. 

 

Acknowledgments 

We would like to express our deep appreciation to the Ministry of Interior for their tremendous assistance in facilitating 

this project, as evidenced by acknowledgment number 112PL024A. The dedication and involvement of the individuals 

in question have been important in the effective implementation of this undertaking. We express our appreciation for the 

Ministry of Interior's commitment to promoting research and innovation in this domain, and we are privileged to have 

received their assistance. 

5. REFERENCES 

[1]  IEA, “Coal 2022,” 2022. [Online]. Available: https://www.iea.org/reports/coal-2022. 

[2]  C. S. RATHORE and R. WRIGHT, “Monitoring environmental impacts of surface coal mining,” International 

Journal of Remote Sensing, pp. 14(6):1021-42, 1992.  

[3]  Janssens-Maenhout, G., Crippa, M., Guizzardi, D., Muntean, M., Schaaf, E., Dentener, F., Bergamaschi, P., 

Pagliari, V., Olivier, J. G. J., Peters, J. A. H. W., van Aardenne, J. A., Monni, S., Doering, U., Petrescu, A. M. R., 

Solazzo, E., and Oreggioni, G. D.: EDGAR v4.3.2 Global Atlas of the three major greenhouse gas emissions for 

the period 1970–2012, Earth Syst. Sci. Data, 11, 959–1002, https://doi.org/10.5194/essd-11-959-2019, 2019.  

[4]  Greenpeace, “Kita, Batubara & Polusi Udara,” Greenpeace Indonesia, Jakarta, 2015. 

[5]  Yue  Li, Hongli  Zhao, Jinghui  Fan, “Application of Remote Sensing Technology in Mine Environment 

Monitoring,” MATEC Web of Conference, p. 10.1051/matecconf/20152204008, 2015.  

[6]  Wang L, Yang L, Wang W, Chen B, Sun X, “Monitoring Mining Activities Using Sentinel-1A InSAR Coherence 

in Open-Pit Coal Mines.,” MDPI, pp. 13(21), 4485, 2021.  

[7]  Saikat Basu, Sangram Ganguly, Supratik Mukhopadhyay, Robert DiBiano, Manohar Karki, and Ramakrishna 

Nemani, “DeepSat: a learning framework for satellite imagery. In Proceedings of the 23rd SIGSPATIAL 

International Conference on Advances in Geographic Information Systems (SIGSPATIAL '15),” Association for 

Computing Machinery, New York, NY, USA,, pp. Article 37, 1–10. https://doi.org/10.1145/2820783.2820816, 2015.  

[8]  Jamaluddin I, Thaipisutikul T, Chen Y-N, Chuang C-H, Hu C-L, “MDPrePost-Net: A Spatial-Spectral-Temporal 

Fully Convolutional Network for Mapping of Mangrove Degradation Affected by Hurricane Irma 2017 Using 

Sentinel-2 Data,” Remote Sensing, p. 13. 5042. 10.3390/rs13245042. , 2021.  

[9]  Cesar I. Alvarez-Mendoza, Ana Teodoro, Alberto Freitas, Joao Fonseca, “Spatial estimation of chronic respiratory 

diseases based on machine learning procedures—an approach using remote sensing data and environmental 

variables in quito, Ecuador,,” ELSEVIER, p. 102273, 2020.  



 

2023 Asian Conference on Remote Sensing (ACRS2023) 

[10]  Laney AS, Weissman DN, “Respiratory Diseases Caused by Coal Mine Dust,” pubmed central, pp. S18-S22, 2014.  

[11]  Аl-shateri Hoshmand Ahmed  Azeez, Shuchrat  Mukhitdinov, “Land use land cover change detection in the mining 

areas of V. D. Yalevsky coal mine- Russia,” EDP Science, pp. E3S Web of Conferences 192, 04021, 2020.  

[12]  L. Madhuanand, P. Sadavarte, A.J.H. Visschedijk, H.A.C. Denier Van Der Gon, I. Aben & F.B. Osei (2021) Deep 

convolutional neural networks for surface coal mines determination from sentinel-2 images, European Journal of 

Remote Sensing, 54:1, 296-309, DOI: 10.1080/22797254.2021.1920341  

[13]  Campos-Taberner, M., García-Haro, F.J., Martínez, B. et al. Understanding deep learning in land use classification 

based on Sentinel-2 time series. Sci Rep 10, 17188 (2020). https://doi.org/10.1038/s41598-020-74215-5.  

[14]  Olaf Ronneberger, Philipp Fischer, Thomas Brox, “U-Net: Convolutional Networks for Biomedical Image 

Segmentation,” ArXiv, p. https://doi.org/10.48550/arXiv.1505.04597, 2012.  

[15]  F. Filipponi, “Sentinel-1 GRD Preprocessing Workflow,” Proceedings, 2019.  

[16]  A. Dasgupta, S. Grimaldi, R. Ramsankaran and J. P. Walker, "Optimized glcm-based texture features for improved 

SAR-based flood mapping," 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort 

Worth, TX, USA, 2017, pp. 3258-3261, doi: 10.1109/IGARSS.2017.8127692.  

[17]  Baruya, Paul. (2019). THE ECONOMIC AND STRATEGIC VALUE OF COAL. 10.13140/RG.2.2.22365.03041..  

[18]  LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015). https://doi.org/10.1038 

/nature14539  

[19]  Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, “Deep Residual Learning for Image Recognition,” 

arXiv, p. 1512.03385, 2015.  

 

 

 


